Mark Scheme 4728 January 2007

(i)(ii)	Net force on trailer is $+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)$	B1		
		M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
	$700-\mathrm{R}_{\mathrm{T}}=600 \times 0.8$	A1ft		$\mathrm{ftcv}\left(+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)\right.$)
	Resistance is 220 N	A1	4	
		M1		For applying Newton's second law to the car or to the whole, with $\mathrm{a}=+/-0.8$ (no vertical forces)
	$\begin{gathered} 2100-700-\mathrm{R}_{\mathrm{C}}= \\ 1100 \times 0.8 \end{gathered}$	A1ft		
	or			$\mathrm{ft} \mathrm{cv}(220)$
	$\begin{array}{r} 2100-\left(\mathrm{R}_{\mathrm{C}}+220\right)= \\ (1100+600) \mathrm{x} \end{array}$			
	0.8			
	Resistance is 520 N	A1	3	

3	(i)	$\mathrm{T}=0.3 \mathrm{~g}$	B1		At particle (or $0.3 \mathrm{~g}-\mathrm{T}=0.3 \mathrm{a}$)
		$\mathrm{F}=\mathrm{T}$	B1		Or $\mathrm{F}=\operatorname{cv}(\mathrm{T}$ at particle) \quad (or $\mathrm{T}-\mathrm{F}=0.4 \mathrm{a}$)
		$\mathrm{R}=0.4 \mathrm{~g}$	B1		
			M1		For using $\mathrm{F}=\mu \mathrm{R}$
		Coefficient is 0.75	A1	5	
	(ii)		M1		For resolving 3 relevant forces on B horizontally, $\mathrm{a}=0$
		$\mathrm{X}=0.3 \mathrm{~g}+0.3 \mathrm{~g}$	A1ft		Ft $\mathrm{X}=0.3 \mathrm{~g}+\operatorname{cv}(\mu)$
					$\mathrm{cv}(\mathrm{R})$
		$\mathrm{X}=5.88 \mathrm{~N}$	A1	3	

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& (i)

(ii)(a)

(ii)(b) \& \begin{tabular}{l}
Momentum before collision
$$
=+/-(0.8 \times 4-0.6 \times 2)
$$

Momentum after collision
$$
=+/-0.8 \mathrm{v}_{\mathrm{L}}+0.6 \times 2
$$

Speed is $1 \mathrm{~ms}^{-1}$

$0.6 x 2-0.7 x 0.5$

Total is $0.85 \mathrm{kgms}^{-1}$

Total momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum. N must reverse its direction.

0.6x2-0.7x0.5 (= $0.85)=0.7 \mathrm{v}$

Speed is $1.21 \mathrm{~ms}^{-1}$

 \&

B1

B1

M1

A1

M1

A1

DM

1

A1

A1ft

A1
\end{tabular} \& 4

4
4

2 \& | Or momentum change L $0.8 \times 4+/-0.8 v_{\mathrm{L}}$ |
| :--- |
| Accept inclusion of g in both terms |
| Momentum change N |
| $0.6 \times 2+0.6 \times 2$ |
| Accept inclusion of g in both terms |
| For using the principle of conservation of momentum |
| even if g is included throughout |
| Accept -1 from correct work (g not used). |
| Must be a difference. SR $0.6 \times 1-0.7 \mathrm{x} 0.5 \mathrm{M} 1$ |
| Must be positive |
| Or $0.6 \mathrm{v}+0.7 \mathrm{w}$ is positive, confirming that the momentum is shared between two particles. |
| No reference need be made to the physically impossible scenario where M and N both might continue in their original directions. |
| ft cv (0.85). Award M1 if not given in ii(a). |
| Positive. Accept (a.r.t) 1.2 from correct work |

\hline 5 \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | $\begin{aligned} & 1.8 \mathrm{t}^{2} / 2 \quad(+\mathrm{C}) \\ & (\mathrm{t}=0, \mathrm{v}=0) \mathrm{C}=0 \\ & \text { Expression is } 1.8 \mathrm{t}^{2} / 2 \\ & \\ & 0.9 \mathrm{t}^{3} / 3 \quad(+\mathrm{K}) \\ & \\ & 0.3 \times 64 \\ & 19.2 \mathrm{~m} \quad \mathrm{AG} \\ & \mathrm{u}=0.9 \times 4^{2} \\ & \\ & \mathrm{~s}=14.4 \times 3+1 / 27.2 \times \\ & 3^{2} \\ & 19.2+75.6 \end{aligned}$ |
| :--- |
| Displacement is 94.8 m OR $\begin{aligned} & v=\int 7.2 d t \\ & \mathrm{t}=0, \mathrm{v}=14.4, \mathrm{c}= \end{aligned}$ 14.4 $s=\int 7.2 t+14.4 d t$ $\mathrm{t}=0, \mathrm{~s}=0, \mathrm{k}=0$ $\begin{aligned} & s=3.6 x 3^{2}+14.4 \times 3 \\ & 19.2+75.6=94.8 \end{aligned}$ |
| Displacement is 94.8 m | \& | M*1 |
| :--- |
| B1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| D* |
| M1 |
| M1 |
| A1 |
| M1 |
| A1 |
| D* |
| M1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 3

4
4

5 \& | For using $v=\int a d t$ |
| :--- |
| May be awarded in (ii). Accept c written and deleted. also for $1.8 \mathrm{t}^{2}+\mathrm{c}$ |
| For using $s=\int v d t$ |
| SR Award B1 for $(s=0, t=0) K=0$ if not already given in (i , or +K included and limits used. |
| For using limits 0 to 4 (or equivalent) |
| For using ' u ' $=v(4)$ |
| For using $s=u t+1 / 2 \times 7.2 t^{2}$ with non-zero u ($\mathrm{s}=75.6$) |
| For adding distances for the two distinct stages |
| For finding $v(4)$ |
| Integration and finding non-zero integration constant |
| Nb Using $\mathrm{t}=4, \mathrm{v}=14.4$ gives $\mathrm{c}=-14.4$ $s=\int 7.2 t-14.4 d t$ |
| Integration and finding integration constant. |
| $\mathrm{Nb} \mathrm{t}=4$ with $\mathrm{s}=19.2$ and $\mathrm{v}=7.2 \mathrm{t}-14.4$ gives $\mathrm{k}=19.2$ |
| Substituting $\mathrm{t}=3$ (OR 7 into $\mathrm{s}=3.6 \mathrm{t}^{2}-14.4 \mathrm{t}+19.2$) |
| ($\mathrm{s}=75.6$) (OR s $=3.6 \times 7^{2}-14.4 \times 7+19.2$) |
| Adding two distinct stages OR $\mathrm{s}=3.6 \times 7^{2}-14.4 \times 7+19.2=94.8 \text { final M1A1 }$ |

\hline
\end{tabular}

6 (i) $1 / 225 \mathrm{v}_{\mathrm{m}}=8$ or $\quad \mathrm{B} * 1 \quad$ Do not accept solution based on isosceles or right
$1 / 2 \operatorname{Tv}_{\mathrm{m}}+1 / 2(25-\mathrm{T}) \mathrm{v}_{\mathrm{m}}=$

	8			
	Greatest speed is	D*B	2	
	0.64	1		
	ms^{-1}			
(ii)		M1		For using $\mathrm{v}=\mathrm{u}+$ at or the idea that gradient represents acceleration
	$\mathrm{V}=0.02 \times 40$	A1		
	$\mathrm{V}=0.8$	A1	3	
(iii)		M1		For using the idea that the area represents displacement. nb trapezium area is $16+8+8$
		M1		For $\mathrm{A}=1 / 2\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \mathrm{h}$ or other appropriate breakdown
	$\begin{aligned} & 1 / 2(70+T) \times 0.8=40- \\ & 8 \end{aligned}$	A1ft		$1 / 2(30+\mathrm{T}) \times 0.8=40-8-1 / 2 \times 40 \times 0.8 \mathrm{ft} \mathrm{cv}(0.8)$
	Duration is 10 s	A1	4	
(iv)		M1		For using $\mathrm{v}=\mathrm{u}+$ at or the idea that gradient represents acceleration
	$0=0.8+\mathrm{a}(30-10)$	A1ft		$\mathrm{ft} \mathrm{cv}(10)$ and $\operatorname{cv}(0.8)$
	Deceleration is $0.04 \mathrm{~ms}^{-2}$	A1	3	Accept -0.04 from correct work
	Or	M1		Using the idea that the area represents displacement.
	$40-8-1 / 2 \times 40 \times 0.8-$	A1ft		$\mathrm{Ft} \mathrm{cv}(0.8$ and 10)
	10 x 0.8	A1		Accept -0.04 from correct work. $\mathrm{d}=-0.04$ A0
	$\begin{aligned} & =0.8(30-10)-\mathrm{a}(30- \\ & 10)^{2} / 2 \end{aligned}$			
	Deceleration is			
	$0.04 \mathrm{~ms}^{-2}$			

