Mark Scheme 4728 January 2007

1	(i)	Net force on trailer is +/-(700 - R _T)	B1		
			M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
		$700 - R_T = 600 \times 0.8$	A1ft		ft cv $(+/-(700 - R_T))$
		Resistance is 220N	A 1	4	
	(ii)		M1		For applying Newton's second law to the car or to the whole, with $a = +/-0.8$ (no vertical forces)
		$2100 - 700 - R_C = 1100 \times 0.8$	A1ft		
		or			ft cv(220)
		$2100 - (R_C + 220) =$			
		(1100 + 600)x			
		0.8			
		Resistance is 520N	A1	3	

2	(i)		M1		For resolving forces vertically
		15 x 0.28 and 11x 0.8	A1		Allow use of $= 16.3$ and $= 53.1$
		Y = 15x0.28 + 11x0.8 - 13	A1ft		Ft cv(15 x 0.28 and 11x 0.8)
		Component is zero AG	A1	4	SR $15\sin + 11\sin -13 = 0$ gets M1A0A1ftA0
	(ii)		M1		For resolving forces horizontally
		$X = 15 \times 0.96 - 11 \times 0.6$	A1		Allow use of $= 16.3$ and $= 53.1$
		Magnitude is 7.8N	A 1	3	Accept 7.79, -7.8
	(iii)	Direction is that of the	B1	1	Do not allow horizontal, 90° from vertical.
		(+ve) x -axis			Do not award if $= 16.3$ and $= 53.1$
					have been used.

3	(i)	T = 0.3g	B1	At particle (or $0.3g - T = 0.3a$)
		F = T	B1	Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)
		R = 0.4g	B1	
			M1	For using $F = \mu R$
		Coefficient is 0.75	A1 5	
	(ii)		M1	For resolving 3 relevant forces on B horizontally, a=0
		X = 0.3g + 0.3g	A1ft	$Ft X = 0.3g + cv(\mu)$
				cv(R)
		X = 5.88N	A1 3	

4728 Mark Scheme Jan 2007

4	(i)	Momentum before collision = $\pm /-(0.8 \times 4 - 0.6 \times 2)$ Momentum after collision = $\pm /-0.8 v_L + 0.6 \times 2$	B1 B1 M1		Or momentum change L $0.8x4 + /- 0.8v_L$ Accept inclusion of g in both terms Momentum change N $0.6x2 + 0.6x2$ Accept inclusion of g in both terms For using the principle of conservation of momentum even if g is included throughout
		Speed is 1 ms ⁻¹	A1	4	Accept -1 from correct work (g not used).
	(ii)(a)	0.6x2 - 0.7x0.5 Total is 0.85kgms ⁻¹ Total momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum.	M1 A1 DM 1		Must be a difference. SR 0.6x1 - 0.7x0.5 M1 Must be positive Or 0.6v + 0.7w is positive, confirming that the momentum is shared between two particles. No reference need be made to the physically impossible scenario where M and N both might continue in their original directions.
		N must reverse its direction.	A1	4	
	(ii)(b)	0.6x2 - 0.7x0.5 (= 0.85) = 0.7v	A1ft		ft cv (0.85). Award M1 if not given in ii(a).
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work

5	(i)	$1.8t^2/2$ (+C)	M*1		
3	(i)	1.0t /2 (+C)	101 . 1		For using $v = \int adt$
		(t = 0, v = 0) C = 0	B1		May be awarded in (ii). Accept c written and deleted.
		Expression is $1.8t^2/2$	A1	3	also for $1.8t^2 + c$
	(ii)		M1		For using $s = \int v dt$
		$0.9t^3/3$ (+K)	A1		SR Award B1 for $(s = 0, t = 0)$ K = 0 if not already given in (i), or +K included and limits used.
		0.3 x 64	M1		For using limits 0 to 4 (or equivalent)
		19.2m AG	A1	4	
	(iii)	$u = 0.9 \times 4^2$	D^*		For using 'u' = $v(4)$
			M1		
			M1		For using $s = ut + \frac{1}{2}x7.2t^2$ with non-zero u
		$s = 14.4 \times 3 + \frac{1}{2} \cdot 7.2 \times 3^2$	A1		(s = 75.6)
		19.2 + 75.6	M1		For adding distances for the two distinct stages
		Displacement is 94.8m OR	A1	5	
		$v = \int 7.2dt$	D^*		For finding v(4)
		•	M1		Integration and finding non-zero integration constant
		t = 0, v = 14.4, c =			Nb Using $t=4$, $v=14.4$ gives $c=-14.4$
		14.4			$s = \int 7.2t - 14.4dt$
		$s = \int 7.2t + 14.4dt$			•
		t = 0, s = 0, k = 0			Integration and finding integration constant. Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2
		•	3.61		Substituting $t = 3$ (OR 7 into $s = 3.6t^2 - 14.4t + 19.2$)
			M1		(s=75.6) (OR s = $3.6 \times 7^2 - 14.4 \times 7 + 19.2$)
		$s=3.6x3^2+14.4x3$	A1 M1		Adding two distinct stages OR
		19.2 + 75.6 = 94.8	A1		$s = 3.6 \text{ x}^2 - 14.4 \text{x}^2 + 19.2 = 94.8 \text{ final M1A1}$
		Displacement is 94.8m	AI		

6	(i)	$\frac{1}{2} 25 v_m = 8$ or	B*1	Do not accept solution based on isosceles or right
		$\frac{1}{2}Tv_m + \frac{1}{2}(25 - T)v_m =$		angled triangle

4728 Mark Scheme Jan 2007

	0			
	8 Greatest speed is	D*B	2	
	0.64 ms ⁻¹	1		
(ii)		M1		For using $v = u + at$ or the idea that gradient
	$V = 0.02 \times 40$	A1		represents acceleration
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents
				displacement. nb trapezium area is 16+8+8
		M1		For $A = \frac{1}{2}(L_1 + L_2)h$ or other appropriate breakdown
	$\frac{1}{2}(70 + T) \times 0.8 = 40 - 8$	A1ft		$\frac{1}{2}(30 + T) \times 0.8 = 40 - 8 - \frac{1}{2} \times 40 \times 0.8$ ft cv(0.8)
	Duration is 10s	A 1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is	A1	3	Accept -0.04 from correct work
	0.04ms^{-2}	3.51		
	Or	M1		Using the idea that the area represents displacement.
	40-8-½ x 40 x 0.8-	A1ft		Ft cv(0.8 and 10)
	10x0.8	A1		Accept -0.04 from correct work. d=-0.04 A0
	$=0.8(30-10)-a(30-10)^{2}$			
	$(10)^2/2$			
	Deceleration is			
	0.04ms^{-2}			

7	(i)	$R = 0.5g\cos 40^{\circ}$	B1		R = 3.7536
		$F = 0.6 \times 0.5 g\cos 40^{\circ}$	M1		For using $F = \mu R$
		Magnitude is 2.25N	A 1	3	
		AG			
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$-/+0.5$ gsin $40^{\circ} - F = 0.5$ a	A1		Either case
		(a) Acceleration is	A1		Accept 10.8 from correct working (both forces have the same sign)
		10.8ms ⁻²			
		(b) Acceleration is	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
		1.79ms^{-2}			
	(iii)a)	$0 = 4 + (-10.8)T_1$	M 1		Requires appropriate sign
		$T_1 = 0.370(3)$	A1		
					Accept 0.37
	b)		M 1		For complete method of finding distance from A to
		2			highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A 1		ft a(up) and/or T_1
		$s = (0 + 4) \times 0.37/2$ or	ft		(s = 0.7405)
		s = 4(0.370) +			
		¹ / ₂ (-			
		$10.8)(0.370)^2$	M1		For mothed of finding time tolton from highest point
			171 1		For method of finding time taken from highest point to A and not using a(up)
		$0.7405 = \frac{1}{2}(1.79)T_2^2$	A1ft		ft a(down) and cv(0.7405) ($T_2 = 0.908$ approx)
		0.7403 = 72(1.77)12 0.370 + 0.908	M1		Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao